Financing Options
We offer a range of discounts and packages to make the programme more accessible.
Early Bird Discount
Register before November 1st
Save
20%
Save 20%
Bring a Colleague
Sign up together with a colleague and you’ll both receive
10%
Off
Invite your friends
Team-Based Learning
Enroll a group of 3 or more participants from the same company and benefit from special team pricing.
Join with your team
Course Highlights
Here are the key highlights of the program, designed to give you a clear picture of what sets this course apart and how it can strengthen your expertise in wind energy.
Enhance Digital Skills
Gain essential data science expertise tailored for the wind energy sector.
Practical Application
Apply theory through hands-on exercises and real-world case studies.
Industry Relevance
Stay current with the latest trends and technologies in wind energy and data science.
Collaborative Learning
Build teamwork skills through group projects and interactive sessions.
Innovation in Wind Energy
Develop innovative thinking and problem-solving for data management and analysis challenges in the wind industry.
You might be interested
Explore more courses that complement your learning journey.

Dimensional Reduction Methods for Analysis and Modelling of Atmospheric and Wind Farm Flows
Duration
5h
Price
700dkk

Lightning Detection, Analysis, and Protection in Wind Energy
Duration
12h
Price
1300dkk

Model-based estimation of remaining useful life
Duration
9h
Price
980dkk
Register here :)
For course-specific questions, please contact the course responsible Tuhfe Göçmen, Senior Researcher at DTU Wind, tuhf@dtu.dk
Didn't find what you were looking for? Or need a customised training solution for your company? Contact Karsten Kryger, Coordinator of Lifelong Learning at DTU Wind, kkry@dtu.dk
Meet your teacher
Learn from world-class researchers and passionate educators who bring cutting-edge expertise and hands-on experience into the classroom.
About the Course
This is an intensive four-day program designed to meet the pressing demand for advanced digital skills in the evolving wind energy sector. Participants will gain expertise in key topics, including research data management, data visualisation, machine learning, and AI applications, all tailored to wind energy and delivered through practical Python programming. The course blends theoretical lectures from leading voices in industry and academia - with interactive, hands-on exercises and a capstone project. Participants are also encouraged to bring their own data and projects to tackle practical challenges directly relevant to their work. This approach ensures that participants acquire both conceptual knowledge and immediately applicable skills for real-world wind energy analysis and decision-making.
Key learning areas encompass the full spectrum of digital best practices: data visualisation, metadata management (including industrial FAIR principles, data ontologies, and labelling), basic statistics, exploratory data analysis, data processing, and feature engineering. Participants will also explore machine learning and AI methods, versioning with Git (supported by pre-course video material), as well as licensing and the wider regulatory framework shaping data use in the wind energy sector.
By integrating the latest industry developments and leveraging deep expertise, this lifelong learning module empowers you to upskill rapidly and meet the evolving needs of the wind energy sector.

After this course, you can
Understand foundational concepts in data science and research data management, and discuss their application within wind energy systems.
Utilize key Python libraries to execute common data science tasks, following best practices for data analysis and visualization in wind energy contexts.
Apply machine learning algorithms to address sector-specific challenges in wind energy.
Analyse datasets using statistical methods and acritically evaluate the performance of data-driven models.
Design and present a capstone project that applies your data science skills to solve real-world wind energy problems.
Early Bird Discount
Register before 20th Sep
Save
20%
Save 20%
Bring a Colleague
Sign up together with a colleague and you’ll both receive
Save
20%
Save 20%
Early Bird Discount
Register before 20th Sep
Save
20%
Save 20%
5 days, hybrid, full-time
1. Background in wind energy engineering, data science, or software development.
2. Foundational knowledge of Python programming.
The course is delivered in a hybrid format, offering both on-site and online participation options.
Evidence your learning with a Certificate of Achievement from the DTU on successful completion.
This course will be stackable with other LLL courses that will be developed by DTU Wind, to form certain specialisations or micro-degrees.
Key Information
Mohit Sharma
Senior Vice Presiden at Marubeni Corporation
Singapore
“Solid and comprehensive overview!”
"For anyone considering a career transition, this course offers a solid and comprehensive overview of wind energy. It equips you with the essential knowledge and skills needed to smoothly transition into the wind energy field."
Sophie Yin
Renewables Engineer, Woodside Energy
Australia
“Flexible learning with outstanding support!”
“What I enjoy the most about the programme is the flexibility. I have been able to access the content around other aspects of my life, which has been very valuable. Also, the lecturers have made them available to the students online to answer questions and actually provide knowledge beyond the course, which I really enjoyed.”
Fahd Outailleur
Head of Engineering at Enel Green Power
Morocco
“Europe’s leader in wind energy”
“I chose to enrol in this wind energy master's program because DTU is the leading technical university in Europe, renowned for its specialization in wind energy. The program reflects the state of the art of the sector. Before joining, I knew some of their software programmes like WAsP and the Global Wind Atlas. So I was confident about the quality of the training.”
DTU Student Testimonials
Discover what DTU students have to say about their journey, their experiences, and the skills they’ve gained.
DigiWind is a pioneering EU-co-funded project, within the Digital Europe Programme (DEP), that aims to support Europe’s digital and green transformation. Through interdisciplinary Specialised Education Programmes (SEPs), DigiWind aims to future-proof the careers of Science, Technology, Engineering, and Math (STEM) professionals in renewable energy. The project will provide advanced digital skills in areas such as High-Performance Computing (HPC), Artificial Intelligence (AI), CyberSec, and other emerging technologies, aligning with the objectives of the DEP.
DTU Wind and Energy Systems is about taking the technology to the next level. About creating an impact for people and society through research and innovation. About collaborating with the entire energy sector to develop the most effective technology on the planet.
Contact us